If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24y^2+50y+19=0
a = 24; b = 50; c = +19;
Δ = b2-4ac
Δ = 502-4·24·19
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-26}{2*24}=\frac{-76}{48} =-1+7/12 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+26}{2*24}=\frac{-24}{48} =-1/2 $
| 1-8p=-9 | | 5x-2.0=-2.4 | | -4.5+1.5x=2x-7 | | -3(-3x+1)=-(-15x-75) | | 3(4x+2)+5x=30-1x | | 9x8=(5+4)x8 | | 15.82h+13.5=6.275 | | x-0.7x=1000 | | (2y-3)(y-2)-4y×y+12y-9=0 | | x^2-4x+90=0 | | 2x+15=40-3x | | 3/5x=2/3=8/3 | | 3/5n+2/3=8/3 | | (1/(3x+3))-(4/(x^2-1))=3/(x-1) | | 10+10x=90 | | 705+g=145 | | 96+b=34 | | 3/5n=2/3=8/3 | | u/4-3.1=-9.5 | | 8x+2=7x+3 | | A=6x-5B=4x+45 | | 14+n/14=1 | | 0.3=1.98x | | 9q=10=118 | | Y=21x+3 | | 3/x+4=8/2x-3 | | 10-(4y-9)=1-5y | | 2^x=9x3^x | | 8-x.4=20 | | -8(8-x)=4/3(x+10) | | 3-4t=11=2 | | w–29=w–64 |